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Abstract: Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue
distribution from a gynoid to an android and an increased prevalence of obesity in women. These
unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a
significant role for estrogen in the regulation of adipocytes’ function. Indeed, preclinical studies
proved the involvement of these hormones in adipose tissue development, metabolism, and inflam-
matory activity. However, the relationship between estrogen and obesity is bidirectional. On the one
hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the
other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors
and key enzymes involved in their synthesis. This narrative review aims to summarize the role of
estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the
estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating
adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the
potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
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1. Introduction

Recent years have changed our understanding of the role of adipose tissue in hu-
man health and disease. Currently, it is not considered only as energy storage but an
active endocrine organ that may modulate the function of other tissues and systems [1].
Obesity-related excessive accumulation of lipids causes changes in the metabolism of
adipocytes, leading, among other things, to the dysfunction of the mitochondria and the
associated endoplasmic reticulum stress [2]. As a result, the expression of several genes in
the adipocyte changes unfavorably, and thus the profile of substances secreted by adipose
tissue (adipokines). This process, known as adipose tissue dysfunction, is believed to
underlie the development of insulin resistance predisposing to glucose intolerance and
several other obesity-related chronic complications, affecting virtually all organs and sig-
nificantly deteriorating the quality of life, which constitutes a serious social and economic
problem [3].

Importantly, the activity of adipose tissue depends on its type (white, brown, beige)
and depot (visceral, subcutaneous, perivascular, etc.). Therefore, the health risk of an obese
individual is determined not only by the total amount of adipose tissue but also by its
distribution and metabolic activity [4]. White adipose tissue (WAT) distribution varies by
gender. Men tend towards visceral (android) obesity, which is associated with increased
insulin resistance and cardio-metabolic risk. Overall, women have higher adiposity than
men; however, their adipose tissue accumulates favorably in the subcutaneous depot, which
is associated with a lower risk of obesity-related complications [5]. This finding points to
the role of estrogen in regulating adipose tissue distribution [6,7]. Moreover, recent years
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have brought evidence confirming the role of estrogen in regulating adipocytes’ insulin
sensitivity, metabolism, and secretory activity [8–10]. Subsequently, estrogen deprivation
was linked to an increased risk of obesity and metabolic complications, which can be
partially reversed by hormone replacement therapy [11–15].

This narrative review aims to summarize the role of estrogen in adipose tissue devel-
opment, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification,
synthesis, and modes of action are presented. Next, their role in the regulation of adipogen-
esis and adipose tissue activity in health and the course of obesity is described. Finally, the
potential therapeutic applications of estrogen and its derivates in the treatment of obesity
are discussed.

2. Estrogens, Their Synthesis, and Mechanisms of Action
2.1. Estrogens

Estrogens constitute a group of lipid-soluble steroid hormones that, based on their
origin, can be divided into two major categories: endogenous and exogenous. Endogenous
estrogens are synthesized in cells of living organisms-both animal and plant (the last are
known as phytoestrogens), while exogenous estrogens include pharmaceutical estrogens
and xenoestrogens [16].

In humans, four estrogens have been identified: estrone (E1), estradiol (E2, which has
two isomers: 17α-E2 and 17β-E2), estriol (E3), and estetrol (E4) [17]. Each form of estrogen
presents a different product delivered from cholesterol by a series of reactions (described
in the subsequent section). Estradiol (E2) is the predominant estrogen in women during
reproduction (both in terms of absolute serum levels as well as in terms of estrogenic
activity). After menopause, it is replaced by estrone (E1) synthesized in adipose tissue from
adrenal dehydroepiandrosterone. Estriol (E3), formed from E1 through 16α-hydroxylation,
is the predominant circulating estrogen during pregnancy. In turn, E4 is an estrogen
produced by the fetal liver and therefore, detectable only during pregnancy. Subsequently,
E3 and E4 levels are negligible in mature men and non-pregnant women [17,18]. In general,
the activity of E2 is about 10-fold higher than E1 and about 100-fold higher than E3 and
E4l. Thus, estrogen deactivation can include both conversion from estradiol to less-active
forms, such as E1 or E3, and sulfation by estrogen sulfotransferase to the forms which are
no longer interacting with estrogen receptors. Therefore, the ratio of circulating estrogens
indicates the balance between their synthesis and deactivation [19].

Examples of pharmaceutical estrogens are ethinyl estradiol (EE), a derivative of E2
used in contraceptives and hormone replacement therapy (HRT), and conjugated estrogens
(CE) used in HRT. In turn, Bisphenol A (BPA), a synthetic chemical used, among others,
in the production of polycarbonate bottles and coatings in cans, is a representative of
xenoestrogens [16].

In addition, there is a large group of chemical compounds known as selective estrogen
receptor modulators (SERMs) able to bind and interact with estrogen receptors and possess
estrogen agonist or antagonist properties at different target tissues, including adipose tissue
(described in the following sections) [20].

2.2. Estrogens Synthesis

Classical steroidogenic tissues, including gonads, adrenals, and placenta, can synthe-
size steroid hormones de novo from cholesterol, while steroid synthesis in other tissues
mainly relies on the conversion of various precursors obtained from circulation [21]. Al-
though the role of adipose tissue as a major steroid conversion site is well established [22],
it was also found to be able to initiate steroidogenesis de novo [23,24].

The key enzyme for estrogen synthesis is aromatase (CYP19A1) whose expression and
activity have been reported in many human tissues including, e.g., endometrium, brain,
bone, skin, and adipose tissue [25,26]. The effect of aromatase activity depends on the local
availability of its substrates-androgens (Figure 1). For instance, in the ovary, where the
main available androgen is testosterone, CYP19A1 activity results in the synthesis of estra-
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diol. In contrast, in the adipose tissue, the main aromatase’ substrate is androstenedione
(delivered from the dehydroepiandrosterone (DHEA) and its sulfate both synthesized in
adrenals), whose aromatization leads to the synthesis of estrone [24]. The conversion rate
of androstenedione into estrone increases with age and adipose tissue volume, and it is
higher in women with gynoid than in those with android obesity [27]. Estrone can also be
synthesized in the adipose tissue by the oxidation of estradiol in the reaction catalyzed by
17β-hydroxysteroid dehydrogenases (17β-HSD) types 1, 7, and 12. Subsequently, estrone
can be converted by steroid sulfotransferase (STS) to estrone sulfate, which is the most
significant component of the pool of circulating estrogen. Another enzyme essential for
the local availability of sex steroids is hormone-sensitive lipase (LIPE) which hydrolyses
fatty acyl esters (FAE) of DHEA and E2 [24,28]. Fatty acyl esterified E2 is its storage form,
unable to exert its biological functions. Therefore, E2 esterification/hydrolysis balance is an
important regulatory mechanism of biologically active steroid levels [29,30]. Estrogens are
eliminated from the body mainly as sulfated and glucuronidated derivatives. The first step
in this process involves the generation of hydroxylated derivatives. The hydroxyl group
can then be sulfated, glucuronidated, or methylated [31].
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Figure 1. Synthesis of sex steroids in adipocyte (a simplified version). AKR1C3-aldo-keto reductase
family 1 member C3 (17β-hydroxysteroid dehydrogenase type 5); CYP19A1-aromatase; E2-FAE-E2
fatty acyl esters; HSD3B1,2-3β-hydroxysteroid dehydrogenase types 1 and 2; HSD17B1,3,7,12-17β-
hydroxysteroid dehydrogenase types 1, 3, 7 & 12; LIPE-hormone-sensitive lipase, STS-steroid sulfatase.

The most abundant steroids in adipose tissue, regardless of the depot and gender, are
DHEA and androstenedione [32,33]. In both women and men, estrogen levels in adipose
tissue are lower than their precursors; however, there is a positive adipose tissue/plasma
gradient for E1 and E2 [27,32–34]. In women, concentrations of E2 in subcutaneous adipose
tissue (SAT) are higher than in men, which correlates with a higher expression of estrogen-
converting genes [29,30]. Importantly, steroidogenesis in adipose tissue may depend on
menopausal and nutritional status. In both, pre-and postmenopausal women, visceral
adipose tissue (VAT) is characterized by a higher concentration of E1 compared to the
SAT [27,34]. However, while in postmenopausal women obesity is associated with the
increased concentrations of E2 in VAT, in premenopausal women it is associated with a
higher CYP19A1 activity and subsequent higher estradiol synthesis in SAT [27,34].

2.3. Estrogen Mechanisms of Action

Estrogen exerts its biological functions via interaction with its receptors (ERs) which
can be both: nuclear and membrane-associated. Nuclear ERs exist in two main forms,
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α and β, which differ in their tissue expression and function [35]. While ERα plays a
stronger physiologic role in females, the activity of ERβ is similar in men and women [36].
Upon ligand binding, ERs undergo conformational changes that allow for the formation
of heterodimers and interaction with estrogen response elements (ERE) in the promoter
of a target gene [37]. However, ERs can also act in an ERE-independent manner by
modulation of co-regulatory proteins and transcription factors that are bound to their
cognate responsive elements on DNA. Obesity is associated with a significant decrease in
the expression of both nuclear ER subtypes in adipose tissue, while weight loss leads to
an increase in ERα and ERβ mRNA levels [38,39]. Importantly, since ER subtypes have
a diverse impact on gene transcription, the local ERα/ERβ ratio is critical for the final
effect of estrogen action in a particular tissue [9]. The proportion between ERα and ERβ in
adipose tissue can physiologically evolve with aging, but also be disturbed by pathological
conditions [40]. This is the case with obesity: the adipose tissue of obese individuals of
both sexes is characterized by a higher ERα/ERβ ratio compared to the tissues obtained
from the normal weight subjects [39,40].

Additionally, estrogen can act rapidly (in a non-classical or non-genomic mechanism)
via membrane-associated receptors interacting with other signaling molecules, e.g., G
proteins, growth factor receptors, tyrosine kinases (Src), etc. The most prominent form of
membrane ER is GPER1 (G protein-coupled membrane receptor1) [41,42].

In turn, in the mitochondria, ERs can modulate gene expression either by direct inter-
action with the mtDNA or by increasing the activity of manganese superoxide dismutase.
In addition, the activity of mitochondria can be modulated by the nuclear ERs that regulate
the expression of genes crucial for mitochondrial actions [41,43].

In the context of adipose tissue biology, ERα has been the most extensively studied,
while the role of ERβ and membrane-associated forms of ER is much less characterized.

3. Estrogens in the Regulation of Adipocyte Proliferation and Fate

Three distinct types of adipocytes have been identified in humans: white, brown,
and beige, differing in origin, morphology, and metabolic profile [1]. In adults, the most
abundant is white adipose tissue (WAT), composed of white adipocytes, the metabolic
and secretion activity of which may differ depending on its location-visceral (VAT) or
subcutaneous (SAT) [44,45].

Sexual dimorphism of adipose tissue distribution in humans appears in puberty which
indicates the role of sex hormones in its development. Indeed, estrogens have been involved
in the regulation of key steps of preadipocyte differentiation, proliferation, and white and
brown adipogenesis [7].

3.1. Estrogens in the Regulation of Stem Cell Differentiation and Preadipocyte Proliferation

Excess adiposity is primarily considered a result of adipocytes’ hypertrophy. However,
studies either with animals on a high-fat diet (HFD) or with ERα mutants pointed to
adipocytes’ hyperplasia also as an important mechanism of adipose tissue expansion.
Adipose tissue contains stem cells able to differentiate into various mesenchymal cell
lineages including bone, cartilage, tendon, and fat, as well as muscle and endothelial
cells [46].

In vitro studies suggest that the influence of estrogen on stem cell differentiation
towards preadipocytes depends on several factors including the cell-line origin, local hor-
mone, and nutrient concentrations, as well as the presence of other molecules potentially
interfering with the estrogen-related signaling pathways. The majority of these studies
were carried out on rodent cell lines. In mouse bone marrow stromal cell line (ST-2), over-
expressing Erα and Erβ, 17 β-E2 causes lineage shift towards osteoblasts [47]. However, in
murine adipose-derived stromal/stem cells (ASCs), activation of ERα by its specific agonist
propylpyrazoletriol (PPT) has been shown to stimulate, in a concentration-dependent
manner, their differentiation towards adipocytes. In turn, activation of ERβ by its selective
agonist diarylpropionitrile (DPN) was much less efficient in this aspect [48]. The expo-
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sition of human ASC to 17 β-E2 induced a pro-adipogenic differentiation reflected by
the increased lipid vacuole formation and decreased alkaline phosphatase (ALP) activity.
This ability of E2 to weaken ASC osteogenic potential was most evident in ASCs isolated
from pre-menopausal women [49,50]. Experimental data suggest that the E2 effect on
osteogenesis occurs via stimulation of both estrogen nuclear receptors α and β, whereas
the effect on adipogenesis is ERα selective [51].

Valuable information on the role of estrogens in the regulation of adipogenesis was
provided by animal studies with a knockout of key genes for the metabolism and action of
these hormones, as well as clinical observations of patients affected by mutations within
these genes. Mice with a global ERα-knockout (αERKO), regardless of sex, are charac-
terized by a significant (50–180%) increase in adipocyte number that is accompanied by
insulin resistance, glucose intolerance, and liver steatosis [52]. Similar phenotype is present
in animals with an aromatase (cyp19) knockout (ArKO), which are unable to synthesize en-
dogenous estrogens [53], and patients with mutations within CYP19A1 and ESR1 (encoding
ERα) [54–57].

The chief mechanism by which estrogens influence adipocyte proliferation seems to be
associated with the inhibition of peroxisome proliferator-activated receptor gamma (PPARγ)
coactivators recruitment. These include, among others, steroid receptor coactivator-1 (SRC-
1) and CREB-binding protein (CBP) [58]. Other potential pathways may involve the
activation of cyclin-dependent kinase inhibitors (CDKIs) p27 and p21, since animals with a
double p27 and p21 knockout present the same clinical phenotype as αERKO and ArKO
mice [59]. Interestingly, mice with a deletion in ERβ (βERKO) are not characterized by
increased adiposity, which suggests a major role of ERα in the regulation of adipocyte
proliferation [60].

The impact of estrogen on ASC differentiation and proliferation is sex-specific. Phe-
notypic differences between αERKO and βERKO mice manifest after sexual maturation
when sex steroid serum levels reach some kind of threshold [61]. Moreover, gender-related
differences in estrogen local concentration contribute directly to the differential fat dis-
tribution between the sexes. While in female mice, HFD induces adipogenesis both in
subcutaneous and visceral depots, in males-specifically in the visceral depot [7]. In turn,
in clinical studies, subcutaneous and visceral preadipocytes from women were more re-
sponsive to E2 in stimulating proliferation than those originating from men. Interestingly,
neither E1 nor dihydrotestosterone had a gender- or site-specific effect on the preadipocyte
proliferation rate [62]. Subsequently, subcutaneous adipose tissue in healthy women was
found to contain a higher content of early-differentiated adipocytes compared to men [63].
In addition, overnutrition has a gender-specific impact on the ASC proliferation rate, too.
For instance, eight weeks of overfeeding in healthy women resulted in a more significant
increase in the number of adipocytes in subcutaneous adipose tissue compared to men [63].
Of note, this phenomenon refers to healthy individuals and relatively short-time exposition
to energy surplus. Otherwise, human obesity (regardless of gender) is associated with a
decrease in the expression of both genes encoding ERs in adipose tissue, which can be
restored after weight loss [38–40]. These findings suggest that obesity-related adipose
tissue dysfunction, via downregulation of expression of genes encoding ERs, may guide
the expansion of adipocytes by hypertrophy rather than hyperplasia.

Importantly, estrogen can also influence adipogenesis indirectly, via the regulation
of critical steps of other steroid hormones synthesis. This refers to the ability of E2 to
upregulate the activity of 11-β-hydroxysteroid dehydrogenase type 1 (11βHSD1) which
converts inactive cortisone to active cortisol-an important adipogenesis upregulator in
human preadipocytes [64]. Expression of 11βHSD1 correlates positively with CYP19A1 and
ESR2 (encoding ERβ) mRNA levels in SAT from both premenopausal and postmenopausal
women irrespective of the nutritional status, and with measures of central fat accumu-
lation [65,66]. On the other hand, other steroid hormones present in the local milieu
may influence the impact of estrogen on adipogenesis. This is the case with androgens
whose administration to women results in the reduction of late-stage differentiation of pre-
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adipocytes to adipocytes [67]. This phenomenon seems to be responsible for the decreased
lipid storage capacity in adipose tissue in women with hyperandrogenism and promotes
lipotoxicity [67,68].

In addition, the physiological impact of estrogen on adipogenesis can be blunted
via components known as endocrine disruptors, for instance, a xenoestrogen-Bisphenol A
(BPA). BPA binds to estrogen receptors (ERα and ERβ) and subsequently, in a concentration-
dependent manner, modulates the expression of several proadipogenic genes, including
PPARγ, SRC-1, and CBP [69]. Exposition of human ASC to BPA results in the increased
expression of genes encoding fatty acid synthase (FASN) and lipoprotein lipase (LPL) and
subsequent, dose-dependent triglyceride accumulation [70]. However, epidemiological
studies regarding the impact of prenatal exposure to BPA on birth weight have led to
conflicting results [71,72].

3.2. Estrogens in the Regulation of White and Brown Adipogenesis

The main type of adipose tissue in the human body is WAT, and its various deposits
may differ in storage capacity, as well as metabolic and secretory activity. Brown adipocytes
present in humans can be of two different origins: part of them arises during embryogen-
esis (a constitutive brown adipose tissue-cBAT), while part develops postnatally within
white adipose tissue depots and therefore is referred to as beige adipocytes or recruitable
BAT (rBAT). Constitutive adipocytes are reached in mitochondria possessing uncoupling
proteins 1 (UCP1) that can uncouple electron transport, and in this way-disperse energy cu-
mulated in chemical bindings of adenosine triphosphate (ATP) as heat. Beige adipocytes are
histologically very similar to cBAT and equivalent in their thermogenic potential; however,
they express unique protein markers that correspond to their functional characteristics and
allow to distinguish them from cBAT and white adipocytes. Irrespective of their origin, due
to their metabolic properties, the induction of brown adipocytes constitutes an attractive
therapeutic approach to combat obesity [1,73].

The results of the studies on how estrogen can influence ASCs’ fate are not unequivocal.
In a study by Lapid et al., selective ERα activation induced murine ASCs towards white
adipocyte lineage, while ERα deficiency reprogrammed the cells to differentiation towards
smooth muscle or brown adipocytes. Subsequently, mice with a selective ERα knockout in
adipose tissue (AT-ErαKO) were resistant to HFD and had reduced adipogenic potential
and fat mass with increased energy expenditure and improved glucose sensitivity. The
authors suggest that the underlying mechanism is probably based on ERα ability to inhibit
tumor growth factor (TGF) β signaling, while ERα loss activates TGFβ expression and
signal transduction, which reprograms progenitor cells into alternative fates, such as the
smooth muscle lineage [74]. In turn, other authors confirmed a high potency of ERα in
stimulating murine ASC proliferation and migration, while revealing that its activation
induces expression of key genes for brown and beige adipocytes’ metabolism (e.g., UCP-1
and PPAR-γ), and, thus, may improve brown and beige adipogenesis. In contrast, induction
of ERβ in murine ASCs repressed brown adipogenesis by decreasing the expression of
these genes [48,75]. The ability of estrogen to induce BAT and increase its thermogenic
activity was confirmed in animal models [76,77].

Several lines of evidence indicate that estrogen may potentiate the enhancement of
BAT activation and beiging of WAT in humans. Imaging studies revealed that women
have larger BAT depots and higher BAT thermogenic activity than men [78–80]. Moreover,
women, compared to men, are characterized by increased recruitment and activation
of BAT in response to cold [81–83]. Subsequently, BAT originating from women has a
higher expression of mitochondrial genes, including UCP1 [84]. In turn, testosterone
inhibits the thermogenic program in beige adipocytes [85]. Female adipose tissue has
a higher sensitivity to activation of the sympathetic nervous system, a key mediator of
BAT activation and/or beiging, too [86]. This finding is consistent with the results of
preclinical studies indicating that estrogen has the potential for increasing BAT sympathetic
nerve discharge and in this way-to stimulate BAT development and thermogenesis [87].
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Sympathetic stimulation of brown and beige adipocytes results in lipolysis and subsequent
production of heat and norepinephrine-stimulated lipolysis in women’s adipocytes exceeds
that seen in men in vitro and in vivo [88]. However, the responsiveness of adipose tissue
to lipolytic adrenergic stimulation depends on the depot and menopausal status [89].
Importantly, in humans, obesity is associated with a decrease in the expression of both
estrogen receptor and thermogenesis-related genes in adipose tissue [39,90].

4. Estrogens in the Regulation of Adipose Tissue Metabolism

In addition to being involved in regulating ASC proliferation and partially also their
fate, estrogens have been implicated in other adipocyte functions, including lipolysis, lipo-
genesis, insulin sensitivity, adipokine secretion, and immunoregulation. Lack of estrogen
action due to their deficiency or inactivating mutations in ERs predisposes individuals to
obesity and other components of metabolic syndrome.

4.1. Estrogens in the Regulation of Lipolysis/Lipogenesis

As it has been mentioned above, hypertrophy has been considered the main mech-
anism by which adipocytes react to energy surplus. The regulation of adipocyte size is
linked to the balance between its lipolytic and lipogenic ability. Adipocyte’s lipid storage
is determined by its capacity for fatty acid (FA) uptake and conversion to triacylglycerol
(TAG)-the process named lipogenesis. TAG is stored in adipocytes in the form of lipid
droplets and mobilized during lipolysis-the process catalyzed by lipoprotein lipase (LPL)
leading to the breakdown of TAG into glycerol and free fatty acids (FFA) [91]. Among
several factors determining adipocyte’s basal lipolytic activity (e.g., genetic variance, age,
physical activity, and the location of the fat depot), sex seems to play a significant role,
suggesting that sex steroids can regulate this dynamic and composed process [92]. Indeed,
clinical studies show that in women the majority of circulating FAs is taken up by SAT,
while in men, a significant number of FAs is preferentially stored in visceral fat [93].

Regulation of lipolysis/lipogenesis by estrogen may depend on distinct molecular
mechanisms. ERs via interaction with an activator protein (AP-1)-like TGAATTC sequence
located in the gene encoding lipoprotein lipase (LPL) downregulate its expression as it was
shown in 3T3-L1 preadipocytes [94]. Moreover, in the mature murine white adipocytes,
unlike in ASC, E2 was shown to decrease the expression of PPARγ and the PPARγ target
genes implicated in lipogenic pathways [58]. However, in rodents, the involvement of
estrogen in the regulation of lipolysis is not limited to the modulation of PPARγ activity.
For instance, the ovariectomy-related decline in E2 level preserves the translocation of
adipose triglyceride lipase (ATGL) to the lipid droplet and disturbs the phosphorylation of
LIPE. Therefore, in rodents E2 deficiency seems to impair both basal and catecholamine-
stimulated lipolysis, preferably in the visceral adipose tissue depot which can be reversed
by estrogen replacement [95].

The results of studies on the impact of estrogen on lipolysis in human adipose tissue
are univocal and depend on the studied model [92]. Pedersen et al. found that E2, via
interaction with ERα and subsequent upregulation of antilipolytic α2 adrenergic recep-
tors, attenuated catecholamine-stimulated lipolysis in primary subcutaneous adipocytes
obtained from postmenopausal women, regardless of the use of hormone replacement
therapy (HRT) [8]. In turn, in a study by Palin et al., high concentrations of E2 decreased,
while lower concentrations were found to increase LPL expression in human primary
subcutaneous adipocytes [96].

In general, women, whose visceral adipose tissue is characterized by a higher number
of beta-adrenergic receptors, have increased sensitivity to catecholamine-induced lipolysis
compared to men [97]. However, menopause and pharmacological castration in women
lead to increased accumulation of VAT, which can be partially reversed by HRT [98,99].
Similarly, individuals lacking either aromatase or ERα tend towards visceral obesity, and
estrogen treatment can improve their body composition, as well as ameliorate some of the
metabolic complications, e.g., insulin resistance [55].



Biomedicines 2023, 11, 690 8 of 23

E2-based HRT was associated with a decrease in the expression of lipogenic genes
such as fatty acid desaturase 1, acetyl CoA carboxylase alpha, stearoyl-coenzyme A (CoA)
desaturase, and PPARγ in adipose tissue of post-menopausal women [100]. In turn, the
impact of menopause on LPL activity is controversial: an initial study by Tchernof et al.
indicated that adipose tissue of postmenopausal women is characterized by a higher LPL
expression and basal lipolysis, compared to younger counterparts [101]. However, a subse-
quent work found no difference in LPL activity in VAT between pre- and postmenopausal
women suggesting that increased adiposity in post-menopausal women may be due to the
increased lipogenesis alone [102]. Concomitantly, three-month treatment with 2 mg estra-
diol valerate did not influence LIPE expression in SAT of postmenopausal women [103].
In contrast, in this study, administration of testosterone undecanoate (40 mg every second
day) significantly downregulated LIPE protein level [104].

In rodents, the relationship between the estrogen status and lipolysis rate in SAT is even
less evident-in some studies, ovariectomy led to a 50% decrease in lipolysis in subcutaneous
adipocytes (restored by E2 supplementation) while in others, no difference of estrogen
deprivation on lipolysis rate was observed [92,105]. These controversial findings in animal
and human studies can be partially explained by the differences in local proportion between
estrogen receptors [106]. The majority of signals regulating adipocyte metabolism seem to
be mediated by ERα. Indeed, ERα-deficient mice have 100% more body fat compared to
wild-type animals. The consequence of ERα knockout is the accumulation of 17β-E2 and
the activation of ERβ signaling. However, ovariectomy in αERKO mice, leading to a loss
of ERβ signaling, results in a decrease in body weight and fat deposits, which correlates
with improved insulin sensitivity and carbohydrate metabolism. Thus, it appears that the
ERβ-mediated effects of estrogens are opposite to those mediated by ERα [107].

Moreover, the impact of estrogens on the lipolysis and lipogenesis pathways can
be modulated by locally and systemically acting androgens, which can be observed, for
example, during the menstrual cycle. Higher androgen levels dampen lipolysis and LIPE
activity in VAT in the luteal phase of the ovarian cycle, while in the follicular phase,
testosterone has been found to increase fatty acid uptake. In healthy women, androgens,
via inhibition of lipolysis and the stimulation of lipogenesis, favor the accumulation of
VAT [92,108]. Thus, the relative balance of estrogen and androgen may be crucial for the
regulation of lipolysis and lipid storage in adipose tissue.

In summary, multiple factors, such as the source (depot) of the investigated tissues,
local androgen concentrations and proportions between ERα and ERβ, and the type of
estrogen used could contribute to the described above discrepancies. Further studies
focused on understanding sex-steroid and gene interplay and observational studies to
describe differences in male and female WAT adipose tissue distribution and activity are
necessary to resolve these associations.

4.2. Estrogens in the Regulation of Adipose Tissue Insulin Sensitivity

Adipose tissue, along with the liver and skeletal muscle, is a key organ involved in the
regulation of glucose metabolism and insulin sensitivity [109]. Insulin resistance is defined
as the inability of insulin to effectively regulate the uptake and/or utilization of glucose
by insulin-sensitive tissues and organs. In insulin-sensitive individuals, hyperglycemia
stimulates insulin release from pancreatic β-cells and inhibits gluconeogenesis in the liver.
However, in an insulin resistance state, insulin secreted in response to hyperglycemia is
neither able to stimulate glucose uptake in peripheral tissues (including adipose tissue),
nor inhibit glucose production in the liver [110].

In clinical studies, premenopausal women when compared to women after menopause
and the respective age-matched men, are characterized by higher insulin sensitivity as-
sessed by homeostatic model assessment–insulin resistance (HOMA-IR) and adipose-
insulin resistance index [111]. Both age-related and surgically induced menopause increase
insulin resistance and the prevalence of other components of the metabolic syndrome [112].
These findings suggest the role of estrogen in the regulation of responsiveness to in-
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sulin [113]. However, the results of the studies evaluating the influence of HRT on glucose
metabolism are not univocal which may be a consequence of methodological differences re-
garding the population selection, HRT type, and regimen as well as the timing of treatment
initiation [114].

Nevertheless, meta-analyses point to the protective effect of exogenous estrogens on
the risk of insulin resistance and diabetes onset [13,115]. This insulin-sensitizing effect of
estrogen is related to its influence on adipose tissue distribution: estrogen prevents the
accumulation of visceral abdominal fat in female mice and protects them from developing
insulin resistance [116]. Of note, studies in men with either estrogen deficiency due to
the CYP19A1 mutation or estrogen resistance due to a mutation in ESR1 indicate that
estrogens are crucial for the regulation of insulin sensitivity and glucose metabolism in both
sexes [54,117]. This is different from testosterone which plays a key role in the regulation
of glucose and lipid metabolism, too, but in different manners in men and women. In
men, low concentrations of testosterone are associated with obesity and adipose tissue
insulin resistance, while in women, excess testosterone has an unfavorable effect on insulin
sensitivity [118].

4.3. Estrogens in the Regulation of Adipokines Secretion

The identification of leptin and adiponectin about 30 years ago changed our concept
of adipose tissue function. It turned out that apart from storing energy, it is capable
of secreting several mediators acting in an auto-, para-, and endocrine manner. These
substances-adipokines-have a significant impact on the functioning of other organs and
tissues. Subsequently, obesity-associated adipose tissue dysfunction contributes to an
unfavorable change in the profile of substances secreted by adipocytes, and thus-to the
development of obesity-related complications [1]. Estrogens, by regulating adipocyte gene
expression, play an important role in the control of substances secreted by adipose tissue.

Obesity is related to an increase in the secretion of leptin-a key adipokine for main-
taining the body’s energy homeostasis (stimulating satiety and tissue sensitivity to insulin),
which also, among others, regulates the tone of the vascular walls and reproductive func-
tions. However, obesity-related peripheral tissue resistance to leptin makes the hormone
unable to exert its beneficial metabolic and cardiovascular effects [119].

In vitro studies suggest that leptin synthesis and secretion are controlled by sex
steroids; however, the effect depends on the intracellular Erα/Erβ ratio, since the in-
teraction of estrogen with Erα in 3T3-L1 adipocytes induces leptin expression, binding
with Erβ exerts an opposite effect [120]. Moreover, studies on primary human omental
adipocytes suggest that the effect of estrogen on leptin synthesis can be gender specific:
in postmenopausal women, E2 increases expression of the LEP gene, but in cells derived
from age-matched men, it does not [121]. Surprisingly, both αERKO and ArKO mice have
elevated serum leptin levels; however, it can be an effect of increased adiposity itself,
rather than the consequence of the lack of estrogen signaling, especially since both ani-
mal and human studies suggest that estrogen treatment results in an increase in serum
leptin levels [52,122–124]. This finding is in agreement with the fact that women, whose
estrogen levels are naturally elevated compared to men, also have higher serum leptin
concentrations. Moreover, a menopause-related decline in estrogen levels is associated with
a decrease in serum leptin, unless a woman gains weight-then increased adiposity leads to
hyperleptinemia [125]. However, in normal-weight subjects, the SAT of premenopausal
women is characterized by higher LEP mRNA levels compared to postmenopausal ones,
due to the higher systemic and local E2 levels [125]. However, neither administration of
estrogen-based oral contraception nor HRT had an influence on serum leptin levels after
adjustment for the body mass index (BMI) [126].

Obesity is associated with a decrease in the concentration of anti-inflammatory and
antioxidant adiponectin, which correlates with an increased risk of heart and vascular dis-
eases. From the point of view of the metabolic risk of obese patients, the adiponectin/leptin
ratio seems to be of key importance, the value of which decreases with increasing insulin
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resistance [127]. Even though adiponectin levels do not differ concerning the menopausal
status and in animal studies, ovariectomy did not alter plasma adiponectin concentrations,
they are lower in age- and BMI-matched males than females. The gender-specific differ-
ence occurs during puberty and correlates with changes in serum testosterone levels [128].
This finding is consistent with in vitro studies, where testosterone reduced adiponectin
secretion in murine 3T3-L1 adipocytes, while high levels of plasma adiponectin were found
in castrated mice and restored to those observed in the control animals after testosterone
treatment [129]. The results of studies on the impact of ovariectomy on adiponectin levels
in rodents are ambiguous. Ovariectomized rats, despite increased visceral adiposity, do not
demonstrate changes in adiponectin levels, and their treatment with 17 β-E2, even though it
reduces fat mass and improves metabolic health, has no influence on adiponectin level [130].
However, in mice, ovariectomy resulted in a decrease in adiponectin serum concentration,
which was restored by the treatment with exogenous estrogens [122]. Accordingly, 17β-E2
can suppress the expression of the adiponectin gene in murine 3T3-L1 preadipocytes, but
not in the human SBGS adipocyte cell line [131,132]. Concomitantly, in mice, neonatal
castration allowed adiponectin levels to reach female adult levels, suggesting that andro-
gens rather than estrogens act as a crucial regulator of its expression [133]. Adiponectin is
present in the circulation in low, medium, and high molecular weight (HMW) oligomeric
forms and the ratio of HMW forms of total adiponectin seems to determine its ability
to regulate insulin sensitivity and cardiovascular properties. Androgens have an impact
on the serum ratio of adiponectin oligomeric complexes. The concentration of HMW
adiponectin forms was found to be significantly higher in female mice than in male subjects.
Subsequently, castration induces an elevation of the HMW form in sera in experimental
animals. In agreement, hypogonadal men have higher HMW adiponectin levels compared
to non-hypogonadal individuals, which can be restored by testosterone supplementation.
In vitro studies confirmed a direct selective inhibition of HMW adiponectin formation by
testosterone [134]. This specific reduction in adiponectin HMW could constitute a potential
mechanism for a higher prevalence of cardiometabolic diseases in males than females.
Notably, in humans, an obesity-related decrease in ER concentration in adipose tissue is
accompanied by a decline in adiponectin mRNA and protein levels [39,135].

The adipose tissue of obese individuals secretes lower amounts of omentin-1-an
adipokine of properties similar to that of adiponectin whose serum concentration negatively
correlates with cardiometabolic risk. In experimental animals, ovariectomy leads to a
decrease in omentin-1 serum level which is accompanied by an increase in serum glucose
and insulin levels and can be restored by estrogen replacement therapy [136]. Data on the
influence of estrogen on omentin-1 levels in humans are scarce; however, in patients with
prostate cancer, circulating omentin-1 concentrations correlated neither with estradiol nor
testosterone levels, suggesting that the regulatory mechanism is different than in the case
of adiponectin [137].

Resistin is an example of another adipokine in which serum levels are altered in the
course of obesity. Resistin is secreted by macrophages infiltrating adipose tissue and by
activating the nuclear factor κB (NF-κB), increases the expression of pro-inflammatory
cytokines, chemokines, and adhesion molecules that attract more immunocompetent cells
to the adipose tissue, as well as endothelin-1 involved in the process of endothelial dysfunc-
tion [138]. Finding that resistin serum levels differ, in a species-specific manner, between
genders both in rodents and in humans suggests a possible involvement of sex steroids
in regulating RSTN gene expression [139]. Estrogen-responsive elements (ERE) have been
identified in the regulatory region of RSTN, and E2 was found to upregulate resistin expres-
sion in murine 3T3-L1 [131,140]. However, in ovariectomized mice, 17 β-E2 replacement
was found to decrease RSTN expression in adipose tissue [122,141]. Data on the impact of
estrogen on resistin secretion in adipose tissue are scarce; however, in obese patients, an
opposite trend in the expression of genes encoding ERs and RSTN in adipose tissue can be
observed [39,135].
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Visfatin secreted by adipocytes and macrophages has a similar profile of action to
resistin. This adipokine is preferentially expressed in VAT as compared with SAT and its
plasma level correlates positively with the volume of visceral fat depots in humans and
increased cardio-metabolic risk, as well as the risk of all-cause mortality. As in the case of
resistin, treatment of murine 3T3-L1 cells with estrogens leads to an increase in visfatin
gene expression. However, estradiol is much less potent in this aspect than estriol, pointing
at the particular role of this regulatory pathway in pregnancy [142]. Interestingly, the
interaction between visfatin and ERs can be bidirectional. In human breast cancer line MCF-
7, administration of visfatin, through MAPK and PI3K/Akt signaling pathways, increases
the phosphorylation of ERα at serine 118 (Ser118) and 167 (Ser167) residues in vitro and
enhances ERE-dependent activity of ER in the presence of 17-β estradiol (E2) [143].

Undoubtedly, estrogens play an important role in regulating adipose tissue secretory
activity. The above-described discrepancies between the studies investigating the effect
of estrogen on adipokine expression may result from the differences in the experimental
design: the investigated cell line, species, type of estrogen, and its concentration. More-
over, local, depot-dependent differences in ER subtypes expression could have impacted
the results.

4.4. Estrogens in the Regulation of Metabolic Inflammation

Overloading adipocytes with lipids causes several changes in their functioning, includ-
ing mitochondrial dysfunction and endoplasmic reticulum (ER) stress, leading to hypoxia,
fibrosis, and, consequently, cell death. As a result, the expression of pro-inflammatory
genes in adipocytes increases, which in turn attracts infiltrating immune cells. The latter
secrete their own inflammatory mediators, intensifying adipocyte dysfunction. Therefore,
obesity is often accompanied by a chronic inflammatory state, called metainflammation,
which correlates with the occurrence of cardiometabolic complications of obesity [144].

In normal-weight individuals, M2 macrophages present in adipose tissue promote
anti-inflammatory signals. However, obesity-related changes in adipocyte secretory profile
(including, e.g., excess synthesis of interleukin 6 (IL-6) and tumor necrosis factor-alpha
(TNFα)) attract pro-inflammatory M1 macrophages to perpetuate pro-inflammatory cy-
tokine signaling to trigger adipocyte cell death [145]. There are several lines of evidence
suggesting that estrogen can suppress pro-inflammatory signals in adipose tissue; however,
their immunomodulatory effect may depend on bioavailability, concentration, immune cell
type, immune stimulus, and ER subtype expression [146].

Macrophages devoid of ERα are unable to respond appropriately to typical stimuli
(e.g., liposaccharide), which results in their diminished ability for phagocytosis and changes
in secretory activity (increased secretion of IL-1b, IL-6, and interferon γ). Notably, in mice
with a selective ERα knockout in hematopoietic/myeloid cells, these alternations are
accompanied by increased insulin, leptin, and plasminogen activator inhibitor-1 (PAI-1)
levels and translate to increased insulin resistance, glucose intolerance, and accelerated
formation of atherosclerotic plaques. This last phenomenon may result from the fact that
estradiol is a transcriptional regulator of transglutaminase (Tgm) 2, an enzyme protective
against atherosclerotic lesion development [147].

In agreement, αERKO mice are characterized not only by increased intra-abdominal
adipose tissue mass and increased adipocyte size, but also by elevated adipose tissue
inflammation (assessed by the expression of genes encoding IL-6 and TNFα) regardless
of gender. Interestingly, a selective knockdown of adipocyte ERα in the context of the
βERKO mouse also increases inflammation and fibrosis, indicating a role for ERβ in the
absence of adipocyte ERα [148]. Similarly, ArKO mice have increased systemic IL-6 and
TNFα concentrations and recruitment of the pro-inflammatory M1 macrophages [53], while
aromatase overexpression (but not 17 β-E2 treatment) reduced adipose tissue inflamma-
tion [61,123]. The opposite trend between the expression of genes encoding ERs and
proinflammatory cytokines (namely IL-1β and IL-6) has also been observed in adipose
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tissues of obese individuals [39,44]. Of note, in other experimental settings, treatment with
estradiol successfully prevented LPS/IFN-γ stimulation of human M2 macrophages [149].

In humans, menopause or ovariectomy leads to an increase in the proinflammatory
cytokine serum levels. Postmenopausal women, compared to premenopausal ones, have
higher leukocyte counts and higher plasma TNF-α, IL-1β, and IL-6 levels [150]. Moreover,
menopausal estrogen loss is associated with an increased number of senescent T-cells and
with a blunted activation of M2 macrophages leading to an increased M1/M2 response ratio,
which may affect the cardiovascular risk profile concerning menopausal status [149,150].
However, meta-analyses suggest that properly chosen HRT reduces the proinflammatory
state in postmenopausal women with the metabolic syndrome, parallel to the decrease in
insulin resistance, fasting glucose, and new-onset diabetes in women without diabetes and
reduced insulin resistance and fasting glucose in women with diabetes [13]. Importantly,
given the anti-inflammatory properties of androgens, the local estrogen-to-androgen ratio
may act as a crucial modulator of metabolic inflammation [151].

The findings from studies on the role of estrogens in the regulation of adipogenesis
and adipose tissue activity in various experimental settings are summarized in Table 3.

Table 1. Role of estrogens in the regulation of adipogenesis and adipose tissue activity.

Process/Function Compound Experimental Settings Effect References

Stem cell
differentiation

17 β-E2 mouse BMSC ↑ differentiation towards
osteoblasts [47]

propylpyrazoletriol
(ERα agonist) murine ASC ↑↑↑ differentiation towards

adipocytes [48]

diarylpropionitrile
(ERβ agonist) murine ASC ↑ differentiation towards

adipocytes [48]

17 β-E2 human ASC ↑↑↑ differentiation
towards adipocytes [49,50]

Preadipocyte
proliferation

17 β-E2 subcutaneous and visceral
preadipocytes

↑↑↑ proliferation in women
↑ proliferation in men [62]

E1 subcutaneous and visceral
preadipocytes

↑ proliferation in women and
men [62]

Adipocyte
browning/beiging

propylpyrazoletriol
(ERα agonist) 3T3-L1 murine preadipocytes ↑ expression of beiging

markers [75]

propylpyrazoletriol
(ERα agonist) murine primary preadipocytes ↑ expression of beiging

markers [75]

17 β-E2 ovariectomized rats
↑ expression

of browning markers
in adipose tissue

[76]

17 β-E2 ovariectomized rats
↑ expression

of browning markers
in adipose tissue

[77]

Lipolysis/
lipogenesis

17 β-E2 3T3-L1 murine preadipocytes ↓ expression of
lipoprotein lipase gene [94]

17 β-E2 mature murine white adipocytes ↓ expression of PPARγ gene (↓
lipogenesis) [58]

17 β-E2

human primary subcutaneous
adipocytes

(pre-and postmenopausal
women)

↓ activity of lipoprotein lipase
and hormone-sensitive lipase [8]
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Table 2. Role of estrogens in the regulation of adipogenesis and adipose tissue activity.

Process/Function Compound Experimental Settings Effect References

17 β-E2 high
concentrations

human primary subcutaneous
adipocytes

(pre-and postmenopausal
women)

↓ expression of
lipoprotein lipase gene [96]

17 β-E2 low
concentrations

human primary subcutaneous
adipocytes

↑ expression of
lipoprotein lipase gene [96]

17 β-E2

human subcutaneous adipose
tissue

samples
(postmenopausal women)

↓ expression of stearoyl-CoA
desaturase, acetyl CoA

carboxylase alpha, fatty acid
desaturase, PPARγ genes

[100]

17 β-E2

human subcutaneous adipose
tissue

samples
(postmenopausal women)

=expression of
hormone-sensitive

lipase gene
[103]

Insulin sensitivity HRT
meta-analysis of

studies in postmenopausal
women

↓ insulin resistance
↓ diabetes onset [13,115]

17 β-E2 ovariectomized C57BL/6 mice ↑ insulin sensitivity [116]

Adipokine
secretion

Leptin

propylpyrazoletriol
(ERα agonist) 3T3-L1 murine preadipocytes ↑ expression of leptin gene [120]

diarylpropionitrile
(ERβ agonist) 3T3-L1 murine preadipocytes ↓ expression of leptin gene [120]

17 β-E2
primary human omental

adipocytes (postmenopausal
women)

↑ expression of leptin gene [121]

17 β-E2 primary human omental
adipocytes (men) ↓ expression of leptin gene [121]

17 β-E2 ovariectomized mice ↑ leptin gene expression in
adipose tissue [122]

HRT postmenopausal women =serum leptin levels [126]

ethinyl estradiol premenopausal women =serum leptin levels [126]

Adiponectin

17 β-E2 3T3-L1 murine preadipocytes ↓ adiponectin secretion [131]

17 β-E2 human SBGS adipocyte cell line =adiponectin secretion [132]

17 β-E2 ovariectomized rats =serum adiponectin levels [130]

17 β-E2 ovariectomized mice
↑ adiponectin gene

expression
in adipose tissue

[122]

Omentin 17 β-E2 ovariectomized rats ↑ omentin serum level [136]

Resitin
17 β-E2 3T3-L1 murine preadipocytes ↑ resistin secretion [131,140]

17 β-E2 ovariectomized mice ↓ resistin gene expression in
adipose tissue [122,141]

Visfatin
17 β-E2 3T3-L1 murine preadipocytes ↑ visfatin gene

expression [142]

E3 3T3-L1 murine preadipocytes ↑↑↑ visfatin gene
expression [142]



Biomedicines 2023, 11, 690 14 of 23

Table 3. Role of estrogens in the regulation of adipogenesis and adipose tissue activity.

Process/Function Compound Experimental Settings Effect References

Metabolic
inflammation

17 β-E2 female aromatase knockout mice ↑ IL-6 and TNFα
serum level [123]

HRT
meta-analysis

of studies in postmenopausal
women

↓ serum levels of
proinflammatory

cytokines
[13]

17 β-E2-17β estradiol; ASC-adipose-derived stromal/stem cells; BMSC-bone marrow stromal cells; E1-estrone;
E3-estriol; ER-estrogen receptor; HRT-hormone replacement therapy; IL-6-interleukin 6; PPARγ-peroxisome
proliferator-activated receptor gamma; TNFα-tumor necrosis factor-alpha; ↑—increase; ↓—decrease.

5. Therapeutic Potential of Estrogen in the Treatment of Obesity

Given the significant role of estrogen in the regulation of adipocytes’ development and
metabolism, estrogen receptor modulators may be an option for the treatment of obesity
and its complications.

In epidemiological studies, a menopause-associated decline in estrogen levels cor-
relates with an increased prevalence of obesity in women and unfavorable changes in
adipose tissue distribution, which can be partially prevented by hormone replacement
therapy [11,12,15]. Since this effect is more pronounced in normal-weight subjects, HRT
can be considered rather as a preventive measure than a therapeutic strategy and is not in-
cluded in obesity-management algorithms. The challenge with estrogen therapy, however,
is its narrow therapeutic index when administered as a chronic treatment. Therefore, the
administration of exogenous estrogen or selective ER modulators requires regular screening
for oncological complications [152].

Since HRT may raise some safety concerns, natural ER modulators may be a ther-
apeutic option in the treatment of obesity [153]. An example of such compounds are
phytoestrogens present in plant products, which resemble human estrogens in terms of
their chemical structure and biological functions. Given their chemical structure, phytoe-
strogens can be divided into two groups: flavonoids (which include soy isoflavones and
coumestans) and non-flavonoids (lignans and resorcinol derivatives).

Phytoestrogens have shown estrogen-like effects on adipogenesis and adipocyte
metabolism in vitro and in animal models of obesity. However, the influence of phy-
toestrogens consumption and the occurrence of obesity in humans is not fully clear. On the
one hand, epidemiological studies suggest their protective effect. For example, it has been
shown that in women, a higher lignan concentration in the urine correlates with an approx-
imately 50% lower probability of obesity, especially visceral (National Health and Nutrition
Examination Survey (NHANES) 2003–2008) [154]. In addition, in the NHANES 2001–2010
study, a higher lignan content in the urine was associated with a lower risk of developing
metabolic syndrome [155]. On the other hand, the results of randomized controlled trials
(RCT) evaluating the impact of phytoestrogen intake on body weight are not so clear
and suggest that the effect of phytoestrogens on body weight is compound-specific and
depends on metabolic status. For example, the use of supplements containing a mixture of
isoflavones was associated with weight loss in healthy postmenopausal women, while the
use of daidzein alone resulted in weight gain in women with metabolic syndrome [156].

Moreover, the intestinal microflora responsible for the transformation of dietary phy-
toestrogens into active metabolites can modulate the effectiveness of phytoestrogens sup-
plementation [157]. Therefore, further well-designed RCTs are needed to evaluate the
therapeutic potential of phytoestrogens in the treatment of obesity in humans [158].

Therapeutic hopes are also associated with compounds selectively modulating the ac-
tivity of estrogen receptors (SERMs), which could enhance the metabolic actions of estrogen
in chronic therapies aiming at the prevention of metabolic dysfunction in postmenopausal
women. SERMs interact with estrogen receptors (ERs) as ligands inducing their conforma-
tional changes and leading to various responses in estrogen-sensitive tissues. SERMs may
have agonist or antagonist properties, depending on their structure, but also target tissue,
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local ERα/ERβ ratio, and availability of coactivators and corepressors [20]. In addition to
their effects on the breast, bone, and endometrium (described in detail elsewhere), SERMs
have an impact on metabolic homeostasis [20].

Tamoxifen is a representative of the first generation of SERMs, acting as an ER antago-
nist in breast tissue and as an agonist in the uterine endometrium increasing endometrial
carcinoma risk. Tamoxifen is routinely used in the therapy of ER-positive breast cancers;
however, obese women without breast cancer taking tamoxifen note lower weight gain
(assessed by BMI increase) compared to those taking a placebo. The anorectic impact
of tamoxifen is related to its ability to influence neuronal transmission in the hypothala-
mus [159]. Nevertheless, the impact of tamoxifen on metabolic health is not so unequivocal.
In premenopausal, normal-weight women, tamoxifen did not have an impact on glucose
metabolism; however, in an overweight subgroup, its administration dramatically increased
insulin resistance leading to the development of diabetes [160]. The underlying mecha-
nisms are not fully elucidated but may be related to the ability of tamoxifen to promote
liver steatosis [161]. In addition, tamoxifen treatment is associated with an increased risk of
hypertriglyceridemia [162].

Raloxifene belongs to the second-generation SERMs, devoid of the disadvantages of
tamoxifen, showing anti-estrogenic activity in breast tissue and estrogenic in bones. Clinical
studies suggest that raloxifene administration has a favorable influence on body compo-
sition. One-year treatment with raloxifene promoted adipose tissue redistribution from
android to gynoid and prevented weight gain in healthy postmenopausal women [163].
Even though raloxifene does not decrease body weight directly, it increases fat-free mass
that transfers to beneficial cardiometabolic outcomes [164,165]. Indeed, raloxifene treatment
has neither adverse impact on glucose metabolism nor triglyceride level and significantly
decreased total and low-density-lipoprotein (LDL) cholesterol levels with a parallel in-
crease of high-density lipoprotein (HDL) cholesterol that was confirmed by the recent
meta-analysis [166,167].

Bazedoxifene (BZA) is a third-generation SERM that exhibits estrogen antagonistic
activity in the breast and uterus while it has a similar effect on bone as raloxifene and,
combined with conjugated estrogen (CE/BZA), is approved for menopausal therapy [168].
Pooled analysis from five randomized, double-blind, placebo- and active-controlled studies
in postmenopausal women showed that CE/BZA administration prevents menopause-
related weight gain [169]. Moreover, this treatment does not influence glucose metabolism
and has a favorable effect on lipid profile (reduces LDL and increases HDL cholesterol
level) [170]. It seems that SERMs with properties similar to BZA and targeting only the ER
involved in energy balance may be a therapeutic option for preventing menopausal weight
gain and metabolic disorders.

In general, modulation of steroid hormone activity to combat metabolic dysfunctions
and weight gain represents a therapeutic strategy that develops rapidly during the last
years. Selective androgen receptor modulators (SARMs) depending on their chemical
structure can act as agonists, antagonists, partial agonists, or partial antagonists of the
androgen receptors within different tissues [171]. Therefore, the administration of SARMs
results in anabolic effects without unfavorable side effects typical for anabolic steroids. In
metabolic aspects, SARMs have been studied in the treatment of cancer-associated cachexia
due to their ability to increase fat-free mass [172].

6. Conclusions

Several lines of evidence point to the significant role of estrogen in the regulation of
adipose tissue development and function in mammals. Therefore, disturbances in estrogen
availability and/or function may lead to increased adiposity and metabolic complications
resulting from impaired lipolysis, adipokine secretion, as well as altered immune responses.
Up to now, the majority of data on estrogens’ role in obesity pathogenesis come from
preclinical studies with cells or animals devoid of estrogen. However, their results are con-
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vergent in many points with clinical trials analyzing the impact of menopause-associated
estrogen decline or hypogonadism on body composition and metabolic status.

Data on the impact of obesity on estrogen metabolism and action in humans are scarce.
Nevertheless, available studies suggest that excess adiposity is associated with decreased
expression of ERs and key enzymes involved in estrogen synthesis [38,39]. Given the
inhibitory effect of estrogens on adipogenesis and lipogenesis, it can be concluded that their
deficiency or impaired function may predispose to the development of obesity. However,
obese individuals have reduced expression of ERs in the adipose tissue [40]. One might
wonder what the primary mechanism is: whether the decrease in the expression of key
genes involved in the metabolism and action of estrogens is the result or the cause of obesity.
The finding that surgically induced weight loss restores the expression of these genes to
levels seen in normal-weight individuals suggests that the impaired estrogen activity in
adipose tissues of obese patients is secondary to weight gain. On the other hand, as the
menopausal status may impact the activity of genes in adipose tissue, a menopause-related
decrease in the expression of genes crucial for estrogen synthesis and action may predispose
postmenopausal women to weight gain and metabolic disturbances.

To date, the therapeutic use of estrogens and ERs-modulating compounds alone in
the treatment of obesity is limited. HRT should be seen as an element of the preven-
tion of cardiometabolic diseases in postmenopausal women rather than as a method of
treating existing conditions. However, it cannot be ruled out that compounds with es-
trogenic activity may potentiate the effect of other drugs with proven beneficial effects
on cardiometabolic complications of obesity, such as sodium-glucose transporter type 2
(SGLT2i) inhibitors [173]. However, this promising approach requires support coming from
preclinical and clinical trials.
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